3anucKu HayYHBIX
cemuuapos [IOMMU
Tom 546, 2025 r.

F. Sadkovskii, N. Loukachevitch, I. Grishin

FINE-TUNING LARGE LANGUAGE MODELS FOR
HYPERNYM DISCOVERY TASK: SISTER TERMS DO
THEIR PART

ABstracT. This paper addresses the problem of bias introduced by
cohyponyms—nodes sharing the same parent hypernym—in training
datasets for hypernym discovery tasks. While the removal of test
items from training data is essential for preventing data leakage,
we argue that excluding cohyponyms is equally critical. When fine-
tuning a model on on a dataset composed of hyponym-hypernym
pairs extracted from a taxonomic resource WordNet, puncturing
only test nodes is not enough to adequately assess the quality of
the model on test data. Cohyponyms act as implicit hints for iden-
tifying hypernyms, artificially enhancing the performance of model
and misrepresenting its utility in real-world scenarios. We fine-tuned
LLaMA-2 using the TaxoLLaMA training procedure of Moskvoret-
skii et al. (2024) on an extensive number of WordNet-derived sub-
samples of hyponym-hypernym pairs with and without their defini-
tions. Evaluation on the SemEval-2018 dataset showed that includ-
ing co-hyponyms in the training data artificially inflates performance
metrics.

§1. INTRODUCTION

Large language models (LLMs) have revolutionized natural language
processing, driving significant advances in various natural language pro-
cessing tasks. These models also hold immense promise for taxonomy en-
richment — the expansion and refinement of hierarchical knowledge struc-
tures crucial for information science applications like search engines, rec-
ommendation systems, and content categorization. Maintaining and en-
riching taxonomies manually is an incredibly resource-intensive task, espe-
cially in the face of the exponential growth of available information. Given
the importance of taxonomy replenishment, various approaches have been
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developed over time, such as leveraging text patterns [1,16,26,32-35], vec-
tor representations [5,12,28,39,42| or both [3,7,45]|. More recently, with the
rise of LLMs new methods based on masked word predictions [15, 44, 46]
and generative models [2,21,29,40] have emerged. LLMs, with their ability
to detect complex semantic relationships, generate contextually appropri-
ate terms, and identify meaningful connections within vast text corpora,
provide a powerful solution for automating critical aspects of this process.
This includes adding and refining categories as well as ensuring consistency
across diverse knowledge domains.
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Figure 1. An example of a taxonomic subgraph with re-
lations between the nodes, adapted from [29]

A promising recent approach, (TaxoLLaMA) [24,25], leverages this po-
tential. The authors fine-tuned a non-instructive LLaMA-2 7B model [41]
on hyponym-hypernym pairs, extracted from WordNet [23] taxonomy. This
resulted in state-of-the-art performance in taxonomy enrichment and re-
lated tasks like hypernym extraction, taxonomy construction, and lexical
entailment after further fine-tuning on specific evaluation datasets.

However, utilizing a pre-existing resource like WordNet for hypernym
discovery requires careful preparation of the training data. This is because
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the dataset may contain inadvertent cues—such as test items or related
terms—that could artificially inflate performance. Specifically, words for
which a hypernym is to be predicted should be excluded from the training
set. The authors of TaxoLLaMA accounted for this concern and released
a special version of their model for evaluation purposes. In this version,
a “cleansed” training dataset was used, ensuring that none of the test set
items were present in training.

While we acknowledge the importance of removing test items, we ar-
gue that this step alone is insufficient. Cohyponyms (i.e. nodes with the
same parent hypernym, see Fig. 1) of the target words should also be
excluded from the training data, as their presence in the training sam-
ple introduces significant bias on evaluation. Cohyponyms act as implicit
hints for identifying the correct hypernym, which can lead to an overesti-
mation of the performance of the model. Addressing this issue is essential
because, in real-world applications of taxonomy enrichment, developers of-
ten encounter scenarios where cohyponyms of newly introduced concepts
are unavailable in the training data. Thus, unbiased results, free from this
cohyponym factor, are more representative of a model’s practical utility.

In this paper we will show that the presence of cohyponyms in the
training dataset increases model performance and therefore constitutes a
form of data leakage. We focused on Hypernym Discovery task and con-
ducted several experiments on SemEval-2018 “1A: English” dataset [10].
The task was chosen due to its fundamental importance in solving other
tasks related to taxonomic relationships.

§2. RELATED WORK

Research at the intersection of Taxonomies and Language Models has
historically been dominated by encoder-based architectures rather than
GPT-style models. Notable contributions in this field include the CTP
(constructs taxonomic trees using pretrained language models) approach
[11], in which the authors took advantage of language models like BERT
[14] and RoBERTa [22]. In [15], a similar approach based on template
prompts and a BERT model for mask filling is proposed. The model was
tested on both BLESS-like [4] and SemEval-2018 datasets [10].

At the same time, there has been limited research comparing these
approaches with more recent decoder-type open-source models such as
LLaMA-2 [41] and Mistral [19] for taxonomy-related tasks. Filling this
gap is also one the main goals of the authors of TaxoLLaMA.



SISTER TERMS DO THEIR PART 149

The Hypernym Discovery task, which involves generating hypernyms
for given hyponyms, has seen significant developments. A major advance-
ment came from [29], who introduced a taxonomy-adapted, fine-tuned
T5 model [13]. Their research demonstrated that encoder-decoder mod-
els, particularly the T5 series, outperformed encoder and decoder-only
architectures. Their approach incorporated both zero-shot and few-shot
methodologies, utilizing template-based prompts and developing special-
ized prompt formats for hypernym prediction and taxonomy representa-
tion.

Several earlier approaches made important contributions to the field.
These include the 300-sparsans method [6], which enhanced traditional
word2vec techniques; the Hybrid model [17], combining k-Nearest Neigh-
bor with Hearst patterns; and CRIM [7], the top performer in the SemEval-
2018 competition, utilizing a Multilayer Perceptron (MLP) with contrastive
loss and Hearst patterns for both hyponym and hypernym extraction. The
Recurrent Mapping Model (RMM) [3] further advanced the field with its
MLP architecture incorporating residual connections.

Specialized models for hypernym prediction have also emerged, such
as Hypert [46], a BERT-based encoder model that predicts hyponym-
hypernym relationships using projection matrix learning. While Hypert
achieved superior results compared to SemEval-2018 Task 9 competitors
like CRIM, its computational intensity (766 times longer processing time
than standard BERT) presents practical limitations.

In the era of distributional semantics, it has been observed that hyper-
nym discovery using vector similarity is challenging because cohyponyms,
in addition to hypernyms, are among the most similar terms in the vector
space. Weeds et al. [43] demonstrated that distinguishing between these
types of semantic relations is difficult using unsupervised distributional
methods. The authors achieved a significant improvement by employing
supervised SVM training on both positive and negative examples.

Several studies have demonstrated that augmenting the list of predic-
tions for input terms with predictions for their cohyponyms enhances re-
sults by achieving higher recall. The authors of [38] and [31] demonstrated
the limitations of using Hearst patterns exclusively for hypernym identi-
fication. More recent approaches incorporate Hearst patterns specifically
designed to identify cohyponyms: the authors of [7] employed enumera-
tion patterns to search for cohyponyms in textual corpora, while in [40]
multiple patterns to generate cohyponyms with decoder-type LLMs were
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utilized. These findings suggest that cohyponyms possess distinctive infor-
mation content that differentiates them from other items within taxonomic
hierarchies.

§3. MODEL DESCRIPTION

To assess the hypothesis that the presence of cohyponyms of the test
items in the training set enhances the performance of model, we fine-tune
LLaMA-2 7B* [41] on specifically constructed training samples using the
TaxoLLaMA methodology as a foundation.

TaxoLLaMA is a LLM-based approach to various taxonomy-related
tasks, first introduced by [24] and further developed in [25]. The authors
describe it as “the everything-in-one model” due to its versatility in han-
dling multiple tasks simultaneously, including Taxonomy Enrichment, Hy-
pernym Discovery, Taxonomy Construction, and Lexical Entailment. The
model is available in two variants: TaxoLLaMA, which was fully trained,
and TaxoLLaMAyench, a version specifically designed to ensure that no test
items were included in the training data, allowing for accurate evaluation
on benchmark tests. TaxoLLaMApencn achieved impressive results, setting
11 state-of-the-art (SoTA) results and securing 4 second-place positions
out of 16 tasks on the benchmark.

The model offers several notable advantages, including a relatively small
weight thanks to LoRA implementation and 4-bit quantization, as well as
strong zero-shot performance on taxonomy-related tasks. Its performance
can be significantly enhanced through fine-tuning on benchmark datasets,
such as the SemEval-2018 datasets [10]. Fig. 2 illustrates the pipeline uti-
lizing the “1A: English” dataset as an exemplar. After such fine-tuning,
TaxoLLaMA achieved a Mean Reciprocal Rank (MRR) value exceeding
50, substantially outperforming the previous SoTA of 45 reported by [29].

The authors conducted an ablation study revealing that the most effec-
tive fine-tuning approach for Taxonomy Enrichment and Hypernym Dis-
covery tasks involved predicting a single hypernym from a hyponym along
with its WordNet definition. They employed a specific prompt structure
(where (1) is the system prompt, (2) is the varying instruction and (3) is
an eventual answer of the model) [24, p. 3]:

(1) [INST] <SYS> You are a helpful assistant. List all the
possible words divided with a comma. Your answer should

Thttps://huggingface.co/meta-llama/Llama-2-7b-hf
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Figure 2. The TaxoLLaMA pipeline comprising two
fine-tuning stages: primary fine-tuning on hyponym—
hypernym pairs from WordNet, followed by secondary
fine-tuning on a task-specific dataset such as “1A: Eng-
lish”. Evaluation metrics are applied after both stages.

not include anything except the words divided by a comma
</SYS>

(2) hyponym: tiger (large feline of forests in most of
Asia having a tawny coat with black stripes) | hypernym:
[/INST]

(3) big cat,

The authors have made their datasets, model, and code publicly avail-
able?. We utilized this code in our research for fine-tuning LLaMA-2 model,
with minor modifications implemented to create experimental dataset vari-
ants, see section 4.

§4. DATASET

Following the main idea of TaxoLLaMA approach, we used two types
of datasets in our experiments.

2ht‘cps ://github.com/VityaVitalich/TaxoLLaMA
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First, for evaluation and additional fine-tuning we used SemEval-2018
Task 9 “1A: English” dataset®. This dataset was chosen primarily to main-
tain consistency with the established practice of using it as a bench-
mark [3, 15,24, 25,29], enabling comparisons with prior approaches. It is
also crucial since we use TaxoLLaMApenen’s performance on this dataset
as a baseline. By focusing on a single dataset, we can more effectively track
the relationship between the sample content and the model’s output for
that specific dataset.

The dataset contains elements representing concepts and entities from
various subject areas, each accompanied by a list of gold hypernyms. The
authors of the competition task collected the hyponyms from the large
text corpos and provided the list of ground truth hypernyms, extracted
from multiple sources, with a primary focus on WordNet and the English-
language Wiki system. A few examples taken from the dataset are pre-
sented in Table 1.

split data gold
training | blackfly homopterous insect, insect

Turonian technical specification, geologic timescale,
training physical property, geological period, magnitude,

unit of time, geological time, geologic time

tropical storm | atmosphere, windstorm, violent storm, air current,
atmospheric state, density, current of air,

storm damage, atmospheric phenomenon, storm,
cyclone, natural phenomenon, tempest, wind

training

test maliciousness | malevolence, distaste, hatred, hate, malignity

quo warranto proceedings, legal proceedings,

test proceeding, due process, legal proceeding

test Jeff Francis thrower, baseball, player, jock, person

Table 1. Sample items from “1A: English” dataset.

The dataset consists of the two splits: ’training’ and ’test’, both con-
taining 1500 elements. We use the training split for fine-tuning and the
test split for evaluation.

Second, to conduct the initial fine-tuning, we collected several subsam-
ples from WordNet 3.0 using the Python NLTK package [8], following the

3The data is available at https://drive.google.com/file/d/14_RgB3_it7a_
1mLXeRCyzwY5BHdWgnlP/view
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algorithm proposed in [25]*. In [25], the authors expand on their prior
work [24] and offer a more comprehensive explanation of their method-
ology. They thoroughly describe the data collection process and the al-
gorithm used to compile the dataset for fine-tuning the LLaMA-2 model.
Specifically, the authors built a directed acyclic graph from the WordNet
synsets, iteratively adding items and linking them to their hypernyms.
Then they extracted available hyponym—hypernym pairs from the graph.

The NLTK WordNet 3.0 implementation comprises 82,115 noun synsets
that are organized into 20 topological generations. Excluding the most gen-
eral term, “entity”, the first generation (i.e., the set of nodes without parent
nodes) contains an additional 7,725 synsets. These synsets predominantly
represent specific terms from domains such as geography, politics, and re-
ligion. The unusually large number of synsets lacking assigned hypernyms
can be attributed to the manual nature of the WordNet annotation pro-
cess, which introduces inconsistencies and deviations from the principle of
coherence.

To ensure the efficiency of the dataset, only pairs in which the hypernym
is not a top-level node in the (sub)graph and the hyponym is unambigu-
ous were included. For the TaxoLLaMAyc,en training, the authors meticu-
lously excluded any items present in the benchmark test datasets, namely
SemEval-2018 Task 9 [10], TexEval-2 [9] and MAGs [37] from the final
version of their dataset. Initially, the dataset contained 44,772 pairs, but
after removing items that overlapped with the test datasets, this was re-
duced to 36,755 pairs. Definitions for the hyponyms were straightforwardly
extracted from WordNet.

In our study, we began by assembling two base training datasets—one
with definitions and one without—following the approach of Moskvoretskii
et al. to training TaxoLLaMAy,cpq,. From these base samples, we generated
66 modified training samples by either reducing the number of specific
items in the sample without definitions or omitting the definitions in the
settings with definitions.

The primary distinction of our approach lies in the handling of test
nodes; unlike the previous approach, we did not include test items from
all three referenced datasets. Instead, since our focus was on the Hyper-
nym Discovery task and we selected “1A: English” as the benchmark, we
excluded only the test items from this particular dataset. This adjustment

4The samples we used for training and the code to collect them is available at
https://github.com/feudor2/TaxoLLaMA
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allowed us to slightly expand the base training sample to 40,636 pairs after
removal of the test items.

The modification process entailed adjusting the cleansed dataset by
varying the types of nodes targeted for modification and controlling the
percentages of these nodes.

Specifically, the modifications were implemented through three approaches:

(1) removing nodes of a certain type;

(2) partially adding definitions to nodes of a certain type;

(3) partially excluding definitions from the sample where definitions
were initially provided.

The target nodes were categorized into three types: cohyponyms only, non-
cohyponyms only, and random nodes. The modifications were applied at
different levels: 0%, 25%, 50%, 75%, and 100%, with 100% representing
the total number of cohyponyms of the removed test nodes that occur
as hyponyms in our base training sample. This number is 5,535 unique
synsets (12.37% of all synsets), while the total number of dataset items
that include these nodes is 8,776 (19.66% of all items).

In the removal setting, we selected a fixed random seed for sampling
cohyponyms and non-cohyponyms, but employed three different seeds for
obtaining random samples. For both cohyponym and non-cohyponym con-
ditions, we conducted a 4-fold cross-validation at 25%, 50%, and 75% re-
moval rates. The cross-validation process involved the following steps: we
partitioned the total number of nodes of both types into four equal parts.
In the cohyponym condition, partitions were normalized based on the num-
ber of hyponym-hypernym pairs that involve cohyponym nodes. For the
non-cohyponym condition, normalization was based on the shortest path
from non-cohyponym nodes to the nearest test item within the complete
WordNet graph. After normalization, we adjusted the partition sizes to
match those in the cohyponym condition.

To control the proportions of removed items, we adopted the following
approach: for 25% and 75% removal rates, we sequentially removed one
or three partitions, respectively, yielding four samples for each proportion.
For the 50% removal rate, we removed all six possible combinations of two
partitions, resulting in six samples. Additionally, in the random sampling
condition, we ensured the presence of cohyponyms in the partitions for
removal by setting the probability of selecting a node proportional to the
ratio of cohyponym nodes to the total number of nodes.
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Table 2 provides detailed information about the sample sizes and the
actual percentage of cohyponyms retained after removing nodes.

. _|actual % of removed cohyponyms by relation type|Size of
proportion
cohyponyms|non-cohyponyms |random samples
25% 24.854+0.47 |0 4.1140.02 38442
50% 50.1+0.37 |0 7.8440.43 36248
75% 74.854+0.43 |0 11.57+0.29 34054
100% 100 0 15.36+0.19 31860

Table 2. Sample sizes and proportions of deleted nodes
averaged across all folds and random seeds (in percent).

For non-cohyponyms and random settings, the sample sizes were aligned
with their corresponding cohyponym samples to ensure a fair comparison.
It should be noted that for cohyponyms, the actual shares retained in the
dataset were slightly lower than the target percentages. This discrepancy
occurred because removing certain nodes caused breaks in the graph struc-
ture, resulting in additional losses. To account for this, we also include in
the table the actual percentage of removed cohyponyms within each sam-
ple.

The modification of definitions was carried out in a similar manner,
but with one additional parameter. This parameter determined whether
definitions were added to a specific type of node in a sample that typically
lacked definitions (the first setting), or whether a certain percentage of
definitions was removed from a sample that initially contained them (the
second setting). Tables 3 and 4 provide an overview of the samples with
the corresponding node types and percentages for the first and the second
settings, respectively. For definition settings we fixed only one seed for
random samples, which gave us 16 training samples in each condition.

All factors considered in the sample construction procedure are depicted
in Fig. 3.

§5. EXPERIMENTS

5.1. Metrics. For the evaluation of our model, we utilized three stan-
dard metrics commonly used in hypernym discovery: Mean Reciprocal
Rank (MRR, 1) and Mean Average Precision (MAP, 2). We calculate all
the metrics for the 15 first predictions, following SemEval-2018 Task 9
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Figure 3. Schematic representation of the key parameters
incorporated in the construction of training samples.

percentage of pairs with |percentage of pairs|actual percentage

excluded definitions with definition of cohyponyms
with definition

base sample, 0% 0 0

cohyponyms, 25% 3.53 25
cohyponyms, 50% 7.08 50
cohyponyms, 75% 10.6 75
cohyponyms, 100% 14.14 100

non-cohyponyms, 25% |3.55 0

non-cohyponyms, 50% |7.08 0

non-cohyponyms, 75% |10.6 0

non-cohyponyms, 100% [14.05 0

random nodes, 25% 3.55 3.58

random nodes, 50% 7.08 6.97

random nodes, 75% 10.64 10.17

random nodes, 100%  [14.15 13.68

Table 3. Sample with definitions with percentage of in-
cluded definitions (1st setting).

evaluation methodology [10].

N

1

MRRGK = —
P2

1

rank;

W

(1)

where N is number of items in the dataset, rank; is the rank of the first
relevant term from the list of predicted hypernyms and K is the maximum

size of the list of hypernyms.

N
1
MAPQK = ¥ Z APQK,,

n=1

(2)
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percentage of pairs with |percentage of pairs|actual percentage

excluded definitions with definition of cohyponyms
with definition

base sample, 0% 100 100
cohyponyms, 25% 96.47 75
cohyponyms, 50% 92.92 50
cohyponyms, 75% 89.39 25
cohyponyms, 100% 85.86 0
non-cohyponyms, 256% |96.45 100

non-cohyponyms, 50% |92.92 100

non-cohyponyms, 75% |89.4 100
non-cohyponyms, 100% |85.85 100

random nodes, 25% 96.45 96.42

random nodes, 50% 92.93 93.03

random nodes, 75% 89.36 89.83

random nodes, 100% 85.85 86.32

Table 4. Sample with definitions with percentage of ez-
cluded definitions (2nd setting).

where N is the number of items in the dataset and APQK,, is the average
precision on K elements for list n (3).
1K
APQK = = l; (Precision@Qk - Iy, = 1]) (3)
where R is the number of ground truth hypernyms for an item, Precision@Qk
is precision at rank k (5.1), K is the maximum number of predicted hy-
pernyms, [ is the indicator function and y; is the label of element i

PrecisionQk = % (4)

where p is the number of relevant items in the first & elements.

5.2. Experiment Setup. First and foremost, we sought to replicate
the original TaxoLLaM A}, training pipeline as closely as possible, con-
structing the same training dataset as described by the authors. This al-
lowed us to assess the reproducibility of their approach. Following this, we
trained the model using our own training samples, which were assembled
according to the method described in the previous section.
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Our experiments involved two fine-tuning procedures, with the model
being evaluated on the “1A: English” test dataset after each procedure. All
experiments were performed using a single NVIDIA Tesla A100 GPU, with
a learning rate of 3 - 107* over one training epoch in a zero-shot setting
(i.e., no demonstration examples were provided in the prompt), low-rank
adaptation (=16, r=8, dropout=0.05) and 4-bit quantization.

For the first fine-tuning procedure, we used a batch size of 64 and trained
the LLaMA-2 model on one of the dataset samples described in Tab. 2, 3
and 4. The prompt was provided as we showed in section 3, either with
or without a definition depending on the experimental setting and type
of training sample. In the second fine-tuning procedure, we reduced the
batch size to 2 and fine-tuned the model using the “1A: English” training
dataset. No definitions were used since they were not provided with the
SemFEval-2018 Task 9 datasets.

For model inference, we used a batch size of 16 and followed the gen-
eration parameters recommended in [25], including the use of 3 beams for
beam search, a temperature of 0.8, a maximum of 32 new tokens, a top-k
value of 40, and constraints to prevent repeating n-grams with length 3.

5.3. Baselines. We used two implementations of TaxoLLaMApencn as
baselines for our evaluation: one fine-tuned exclusively on WordNet achieved
an MRR score of 37.66, and the other subsequently fine-tuned on the “1A:
English” training dataset attained an improved MRR score of 51.59 on
the “1A: English” test set [25, p. 10]. But since we narrowed our research
to evaluation only on one dataset, and thus use a larger base dataset
with less test items removed, we were prompted to train our own base-
line TaxoLLaMAyench-like models on two versions of our dataset — one
including definitions and one without them. We refer to these models as
TaxoLLaMAgg(14) and TaxoLLaMAgg1a)-def, Tespectively.

§6. RESuULTS

This section is organized as follows. In the first subsection, we compare
the performance of the models presented in [25] with the reproduced ver-
sions, alongside the MRR scores of our own TaxoLLaMAgg14) variations.
The second subsection examines the performance of models trained on 42
samples extracted from WordNet, where no definitions were included in
the prompt. In the third subsection, we analyze the results of training
models on 24 WordNet samples that included definitions. Finally, in the
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fourth subsection, we evaluate the performance of the 66 models discussed
in the second subsection after further fine-tuning using the “1A: English”
training dataset.

6.1. Baselines. The MRR scores obtained in [25] with those reproduced

by us on “1A: English” test dataset are shown in Table 5. “(fine-tuned)”
indicates models that were fine-tuned on the training portion of the “1A:
English” dataset.

baseline MRR
TaxoLLaMApencn [25] 37.66
TaxoLLaMApencn (fine-tuned) [25]] 51.59
TaxoLLaMAyench 38.82
TaxoLLaMAypenen (fine-tuned) 50.11
TaxoLLaMAbchh_dCf 40.36
TaxoLLaMApench-der (fine-tuned) [51.63

Table 5. Baseline models’ performance assessed with
MRR.

We successfully replicated the metric scores reported for TaxoL.LaMA.
During the initial fine-tuning, we achieved slightly higher scores compared
to the original results, both with and without the use of definitions. Addi-
tionally, we validated the authors’ hypothesis that training with definitions
leads to improved model performance.

In Tab. 6 we provide TaxoLLaMAgg(14) model MRR scores fine-tuned
on the base dataset with excluded “1A: English” test items.

baseline MRR
TaxoLLaMAgp14) 39.31
TaxoLLaMAgg14) (fine-tuned) |52.21
TaxoLLaMAgg (1 A)-der 36.66
TaxoLLaMAgg(14)-def (fine-tuned)| 49.25

Table 6. TaxoLLaMAgg(14) performance of models as-
sessed with MRR.

By removing only the “1A: English” test items from the WordNet graph,
we achieve even better results following both the initial and “1A: English”
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dataset fine-tuning. However, a notable contrast emerged when training
with and without definitions: while increasing the sample size improves
model performance compared to previous baseline experiments, adding
more definitions, conversely, reduces it.

The TaxoLLaMAgg14) model variations’ performance are referred to
as “base samples” for the corresponding experimental setups. For example,
“TaxoLLaMAgg(1a)” serves as the baseline model for the initial fine-tuning
using samples from WordNet, as well as for fine-tuning using samples that
include definitions (the first setting). Meanwhile, “TaxoLLaMAgg(14)-def
(fine-tuned)” acts as the baseline model for further “1A: English” training
set fine-tuning of models that were previously trained on samples where
we controlled the elimination of definitions (the second setting).

6.2. Fine-tuning on WordNet. We compare the results of models
after fine-tuning on samples with removed nodes introduced in Tab. 2 in
Tab. 7 below; the changes of MRR® scores across different proportions are
depicted in Fig. 4.

—+— cohyponyms

L - non-cohyponyms
—— random [ /
= YL ; —
p= 1 »
38 |- =
| | |
0 25 50 75 100

proportion

Figure 4. MRR across three conditions in the removal set-
ting.

The performance of model exhibited lower scores when cohyponyms
were removed compared to when they were retained across all condi-
tions, with the exception of the 25% node removal condition. In the non-
cohyponym condition, the maximum metric score was observed at 100%
proportion, while the cohyponym condition reached its peak performance

5Henceforth, we report only MRR scores, as they demonstrated a strong positive
correlation with MAP scores in our experiments (r = 0.82).
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percentage of deleted nodes |MRR MAP
(by number of cohyponyms)
base sample, 0% 39.31 25.77
cohyponyms, 25% 39.54+0.51|24.954+0.69
cohyponyms, 50% 39.374+0.6 |24.914+0.41
cohyponyms, 75% 38.01+0.55(23.86+0.5
cohyponyms, 100% 38.93 24.54
non-cohyponyms, 25% 39.49+0.38125.19+0.48
non-cohyponyms, 50% 40.1740.42(25.74+0.24
non-cohyponyms, 75% 38.74+0.44|24.77+0.55
non-cohyponyms, 100% 41.55 26.29
random, 25% 39.1440.53|24.91+0.34
random, 50% 39.9441.24|25.3240.77
random, 75% 39.954+0.8 |25.27+0.25
random, 100% 39.7240.27|25.34+0.12

Table 7. WordNet training samples by type and propor-
tion of removed nodes with metrics achieved by corre-
sponding fine-tuned models.

at 25% proportion. These findings suggest that cohyponyms play a cru-
cial role in the model’s learning process, as their reduction corresponds to
decreased performance. Furthermore, increasing the concentration of co-
hyponyms by selectively removing items with other taxonomic relations to
test items resulted in improved performance metrics.

Fig. 4 reveals a non-monotonic relationship between the proportion
of removed items and performance scores in both cohyponym and non-
cohyponym conditions. The scores demonstrate an initial increase from 0
to 50% removal, followed by a decrease reaching their minimum at 75%
removal. This pattern suggests the absence of a direct correlation between
sample size and model performance. This observation aligns with our find-
ings in Section 6.1, where we examined the performance of base models
trained on datasets with removed test nodes from different origins.

Analysis of random samples reveals no significant variation between val-
ues. The scores stabilize at levels comparable to those observed at 25-50%
removal proportions in the other two experimental conditions. This pattern
can be attributed to the relatively low baseline frequency of cohyponyms
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in the sample, which ranges from approximately 4% to 15% across all pro-
portions. As previously demonstrated, the systematic bias introduced by
selective removal of non-cohyponyms while retaining cohyponyms becomes
particularly pronounced when the removal proportion exceeds 50%.

These findings suggest that the sampling methodology influences the
observed patterns in the data and provide support for our hypothesis re-
garding the bias introduced by learning hypernyms for the cohyponyms of
the test items.

6.3. Fine-tuning on WordNet with definitions. The metrics ob-
tained after training with definitions included in the prompt for certain
items are presented in Tab. 8 (inclusion by node type, the first setting)
and 9 (omission by node type, the second setting), and the MRR scores
are depicted in Fig. 5 and 6, respectively.

percentage of items with defini-

tion by number of cohyponyms [MRR |[MAP
base sample, +0% 39.31 |25.77
cohyponyms, +25% 39.94 25.73
cohyponyms, +50% 39.2 |25.01
cohyponyms, +75% 39.45 (24.57
cohyponyms, +100% 36.59 |23.18
non-cohyponyms, +25% 40.31(25.23
non-cohyponyms, +50% 39.35 [24.72
non-cohyponyms, +75% 39.3 [24.42
non-cohyponyms, +100% 38.43 |23.54
random, +25% 39.68 |25.06
random, +50% 39.19 |24.4
random, +75% 39.49 |24.45
random, +100% 38.45 |23.41

Table 8. WordNet training samples by proportion of
added definitions and type of nodes to which they were
added with metrics achieved by corresponding fine-tuned
models (1st definition setting)

In the first experimental setting, differences are apparent only at the
lowest (25%) and highest (100%) proportions. In both cases, adding def-
initions to cohyponyms results in worse performance compared to adding
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Figure 5. MRR across three conditions in the 1st defini-
tion setting.

percentage of items with defini-

tion by number of cohyponyms [MRR |[MAP
base sample, 100% 36.66 [21.20
cohyponyms, -25% 38.41 [22.15
cohyponyms, -50% 39.76 |22.93
cohyponyms, -75% 39.85(22.73
cohyponyms, -100% 39.73 [22.39
non-cohyponyms, -25% 36.82 21.39
non-cohyponyms, -50% 36.74 |21.45
non-cohyponyms, -75% 35.81 (20.61
non-cohyponyms, -100% 36.41 (22.07
random, -25% 36.94 |21.59
random, -50% 37.10 |21.88
random, -75% 36.96 [21.8
random, -100% 37.22 |21.86

Table 9. WordNet training samples by proportion of
nodes from which we excluded definitions and type of such
nodes with metrics achieved by corresponding fine-tuned
models (2nd definition setting).

definitions to non-cohyponyms, especially at the highest proportion, where
we observe a sharp decrease in performance. One possible explanation is
that, in this setup, all sister terms were learned in a form that differed sig-
nificantly from the format used during the extra fine-tuning and evaluation
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Figure 6. MRR across three conditions in the 2nd defini-
tion setting.

phases, as the definitions were not provided for the “1A: English” dataset.
As a result, the model is unable to effectively retrieve this information
from memory.

In the second setting, we observe that the absence of cohyponym defini-
tions led to superior performance compared to other conditions across all
tested proportions. This finding contradicts the general assumption pro-
posed by Moskvoretskii et al. [25] regarding the benefits of including defini-
tions during initial training. However, it supports our hypothesis. Specif-
ically, since cohyponyms contribute more significantly than other items,
performance improves when the prompt structure more closely matches
the one used during evaluation. This is precisely the case for “1A: English”,
where the datasets did not include definitions, and thus the evaluation was
conducted using prompts without definitions.

A comparison of the two settings reveals that, for our dataset, the im-
pact of definitions appears to contradict the claims made by the authors
of TaxoLLLaMA. In the first setting, the best performance was achieved
by models with the lowest percentage of added definitions, while in the
second setting, the highest performance corresponded to models with the
higher percentage of removed definitions. Furthermore, models in the sec-
ond setting generally performed worse than those in the first setting. The
average metrics for the second setting were MRR 39.13 and MAP 24.58,
compared to the first setting, where the average metric scores were MRR
37.57 and MAP 21.85.

In this subsection, we further investigated the impact of node types
based on their taxonomic relationships to the test items. While the bias
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observed in the first section was minor, in the second setting we demon-
strated that the performance of the model improves when definitions are
omitted from the cohyponyms. This indicates that a a consistent form
of presentation of cohyponyms during training and the test items during
evaluation is critical.

6.4. Fine-tuning on “l1A: English” training dataset. In Tab. 10,
11 and 12 we compare metric scores that were achieved by the models
trained in subsection 6.2 and 6.3 after additional fine-tuning. Fig. 7, 8,
and 9 illustrate the improvements in MRR scores attained by the model
across all conditions in our three experimental settings.

percentage of deleted nodes

(by number of cohyponyms)| MRR(+gain)| MAP(+gain)
base sample, 100% 52.21,129 [33.51 774
Cohyponyms, 25% 51.47+11_93 33~35+8.4
COhypOIlyHlS, 50% 50-75+11.38 32.83+7_92
cohyponyms, 75% 51.18113.18 |33.18.9.32
Cohyponyms, 100% 49.72+10.79 32.31+7.77
non-cohyponyms, 25% 50.9411.41 329,771
non-cohyponyms, 50% 51.56111.39 |33.25417.55
non-cohyponyms, 75% 50.784+12.04 [32.8548.08
non-cohyponyms, 100% 51.5419.99 33.6.71
random, 25% 51.32412.19  [33.1648.25
random, 50% 51.58411.64 [33.2747.95
random, 75% 50.224,1()‘27 32.78+7.51
random, 100% 51.47+11.75 33~3+7.96

Table 10. Metrics obtained by the models discussed in
subsection 6.2 after fine-tuning on the “1A: English” train-
ing dataset. The gain reflects the difference between the
second and the first stage of fine-tuning, detailed in Tab.
7, where types and proportions of removed nodes in each
sample is determined

Based on the results presented in the tables, we observe that additional
fine-tuning improves overall performance but also introduces slight changes
in the inter-group patterns previously identified in subsection 6.2. The dis-
tribution of maximum metric values differs between the two procedures. In



166 F. SADKOVSKII, N. LOUKACHEVITCH, I. GRISHIN

percentage of nodes with definitions

(by number of cohyponyms) MRR(+gain)| MAP(+gain)
base sample, 0% 52.211129 |33.5147.74
cohyponyms, +25% 51.79411.85 33.3547.62
cohyponyms, +50% 5131121 33.1718.16
cohyponyms, +75% 51-51+12.06 33~31+8.74
cohyponyms, +100% 50.28 1360 |32.4949.31
non-cohyponyms, +25% 51.48,11.17 |33.0917 .86
non-cohyponyms, +50% 51.2411 85 33.27 1855
non-cohyponyms, +75% 51.66 11236 [33.4419.02
non-cohyponyms, +100% 51.38112.95 [33.1849.64
random, +25% 51.79+12_11 33°62+8.56
random, +50% 51424129903 |33.2488
random, +75% 51.56412.07 |33.3948.04
random, +100% 50-1+11.65 32.71_;,_9.3

Table 11. Metrics, achieved by models discussed in sub-
section 6.3 (1st setting) after fine-tuning on “1A: English”
training dataset. The gain reflects the difference between
the second and the first stage of fine-tuning, detailed in
Tab. 8, where node types and proportions of added defi-
nitions in each sample is determined

the non-cohyponym removal condition, the new maximum was achieved on
the sample that had previously ranked second-highest (cf. Table 7 and 10).

A similar shift is observed in the first definition setting, where the top
result in the non-cohyponym condition changed from 25% to 75% (cf. Tab
8 and 11). In the second definition setting, all maximum scores (except one
MAP score in the non-cohyponym condition) were obtained with 100% of
the definitions removed (Tab. 12). This pattern is consistent with our pre-
vious observations that cohyponyms significantly affect performance and
that providing definitions for too many items has a negative impact. Fine-
tuning on the “1A: English” dataset was performed without definitions, so
the samples with the maximum number of nodes with definitions removed
appear to align better with the secondary fine-tuning, resulting in higher
metric scores.

Upon closer examination of the secondary fine-tuning gains, we find that
the metrics achieved after the secondary fine-tuning are comparable across
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percentage of nodes with

removed definitions MRR(+gain) | MAP(+gain)
(by number of cohyponyms)

base Sample, 100% 49.25+12_59 32~04+10.S4
cohyponyms, -25% 50.2411.79 32.6110.45
cohyponyms, -50% 50.56 1 10.8 32.93 110
cohyponyms, -75% 50.23110.38 (3223195
cohyponyms, -100% 51-21+11.48 33.34+10_95

non-cohyponyms, -25% 51.224144  [33.34411.05
IlOIl—COhypOIlyIIlS7 —50% 49.89+13.15 32.77+11.32
non-cohyponyms, -75% 50.69114.88 |32.95112.34
non—cohyponyms, —100% 51-29+14.88 33.14+11_07

random, -25% 50.34113.4 33.15111.56
random, —50% 50.87+13.77 33.02+11.14
random, -75% 51.58+14_62 33.19+11_39
random, —100% 51'7+14.48 33.86+12

Table 12. Metrics, achieved by models discussed in sub-
section 6.3 (2nd setting) after fine-tuning on “1A: English”
training dataset. The gain reflects the difference between
the second and the first stage of fine-tuning, detailed in
Tab. 9, where node types and proportions of removed def-
initions in each sample is determined

all three experimental conditions. Specifically, in the removal experiment,
the comparison of the results after the two stages reveals that performance
improvements in the non-cohyponym condition are less pronounced than
in the cohyponym condition (see Fig. 9).

This pattern extends to the definition settings, where as well there is an
inverse relationship between performance after initial fine-tuning and the
subsequent gains from the second stage. This is supported by the negative
correlation measured by Pearson’s r, which is -0.8875 for MRR and -0.9669
for MAP.

These findings suggest that fine-tuning offers only a limited performance
improvement, regardless of the presence of cohyponym bias.

However, it is important to note that the “1A: English” dataset itself
contains a small proportion of cohyponyms—approximately 3%. Therefore,
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Figure 7. The gain in MRR the models initially fine-
tuned on WordNet (removal setting) achieved after the
secondary fine-tuning on “1A: English” dataset.
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Figure 8. The gain in MRR the models initially fine-tuned
on WordNet (1st definition setting) achieved after the sec-
ondary fine-tuning on “1A: English” dataset.

it is plausible that the cohyponym bias observed during secondary fine-
tuning was already present after the initial fine-tuning. The differences we
observe may thus result from the overlap of these two biases. Nonetheless,
this remains a hypothesis that we have not been able to verify.
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Figure 9. The gain in MRR the models initially fine-tuned
on WordNet (2nd definition setting) achieved after the
secondary fine-tuning on “1A: English” dataset.

§7. CONCLUSION

Our study highlights the significant impact of cohyponyms on the per-
formance of model in the Hypernym Discovery task, reinforcing our argu-
ment that their presence constitutes a form of data leakage. This phenom-
enon is attributable to the similar contexts in which cohyponyms occur,
resulting in highly similar embeddings. By showing that cohyponyms serve
as implicit cues for identifying hypernyms, our results emphasize the ne-
cessity of excluding them during training to achieve unbiased evaluations
that more accurately reflect real-world scenarios. The variability in perfor-
mance when cohyponyms are removed, contrasted with the minimal impact
of other manipulations like random deletions, underscores the nuanced re-
lationship between the presence of cohyponyms and task outcomes. These
insights highlight the importance of meticulous dataset curation to ensure
the reliability and applicability of taxonomy expansion systems in practical
contexts where cohyponyms are not necessarily present.

Moreover, our comparative analysis indicates that fine-tuning and ex-
perimental adjustments introduce complexities that can unpredictably al-
ter performance trends. The observed shifts in metrics, influenced by cohy-
ponym density and dataset characteristics such as the presence of defini-
tions, challenge prior assumptions and suggest that evaluation frameworks
must account for these intricacies. Collectively, our findings advocate for
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a more rigorous approach to sample design and stress the importance of
mitigating cohyponym bias in training data.

A potential solution, not addressed in [25], is the use of diachronic Word-
Net datasets as proposed in [27]. These datasets involve training on nodes
from an older version of WordNet and testing on a newer version, lever-
aging naturally acquired collections due to chronological continuity. This
method appears unbiased and better mirrors the practical conditions of
the taxonomy enrichment process.
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